15 research outputs found

    Insights into Analogy Completion from the Biomedical Domain

    Get PDF
    Analogy completion has been a popular task in recent years for evaluating the semantic properties of word embeddings, but the standard methodology makes a number of assumptions about analogies that do not always hold, either in recent benchmark datasets or when expanding into other domains. Through an analysis of analogies in the biomedical domain, we identify three assumptions: that of a Single Answer for any given analogy, that the pairs involved describe the Same Relationship, and that each pair is Informative with respect to the other. We propose modifying the standard methodology to relax these assumptions by allowing for multiple correct answers, reporting MAP and MRR in addition to accuracy, and using multiple example pairs. We further present BMASS, a novel dataset for evaluating linguistic regularities in biomedical embeddings, and demonstrate that the relationships described in the dataset pose significant semantic challenges to current word embedding methods.Comment: Accepted to BioNLP 2017. (10 pages

    Automated Coding of Under-Studied Medical Concept Domains: Linking Physical Activity Reports to the International Classification of Functioning, Disability, and Health

    Get PDF
    Linking clinical narratives to standardized vocabularies and coding systems is a key component of unlocking the information in medical text for analysis. However, many domains of medical concepts lack well-developed terminologies that can support effective coding of medical text. We present a framework for developing natural language processing (NLP) technologies for automated coding of under-studied types of medical information, and demonstrate its applicability via a case study on physical mobility function. Mobility is a component of many health measures, from post-acute care and surgical outcomes to chronic frailty and disability, and is coded in the International Classification of Functioning, Disability, and Health (ICF). However, mobility and other types of functional activity remain under-studied in medical informatics, and neither the ICF nor commonly-used medical terminologies capture functional status terminology in practice. We investigated two data-driven paradigms, classification and candidate selection, to link narrative observations of mobility to standardized ICF codes, using a dataset of clinical narratives from physical therapy encounters. Recent advances in language modeling and word embedding were used as features for established machine learning models and a novel deep learning approach, achieving a macro F-1 score of 84% on linking mobility activity reports to ICF codes. Both classification and candidate selection approaches present distinct strengths for automated coding in under-studied domains, and we highlight that the combination of (i) a small annotated data set; (ii) expert definitions of codes of interest; and (iii) a representative text corpus is sufficient to produce high-performing automated coding systems. This study has implications for the ongoing growth of NLP tools for a variety of specialized applications in clinical care and research.Comment: Updated final version, published in Frontiers in Digital Health, https://doi.org/10.3389/fdgth.2021.620828. 34 pages (23 text + 11 references); 9 figures, 2 table

    Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings

    Get PDF
    Natural language processing techniques are being applied to increasingly diverse types of electronic health records, and can benefit from in-depth understanding of the distinguishing characteristics of medical document types. We present a method for characterizing the usage patterns of clinical concepts among different document types, in order to capture semantic differences beyond the lexical level. By training concept embeddings on clinical documents of different types and measuring the differences in their nearest neighborhood structures, we are able to measure divergences in concept usage while correcting for noise in embedding learning. Experiments on the MIMIC-III corpus demonstrate that our approach captures clinically-relevant differences in concept usage and provides an intuitive way to explore semantic characteristics of clinical document collections.Comment: LOUHI 2019 (co-located with EMNLP

    Characterizing the impact of geometric properties of word embeddings on task performance

    Get PDF
    Analysis of word embedding properties to inform their use in downstream NLP tasks has largely been studied by assessing nearest neighbors. However, geometric properties of the continuous feature space contribute directly to the use of embedding features in downstream models, and are largely unexplored. We consider four properties of word embedding geometry, namely: position relative to the origin, distribution of features in the vector space, global pairwise distances, and local pairwise distances. We define a sequence of transformations to generate new embeddings that expose subsets of these properties to downstream models and evaluate change in task performance to understand the contribution of each property to NLP models. We transform publicly available pretrained embeddings from three popular toolkits (word2vec, GloVe, and FastText) and evaluate on a variety of intrinsic tasks, which model linguistic information in the vector space, and extrinsic tasks, which use vectors as input to machine learning models. We find that intrinsic evaluations are highly sensitive to absolute position, while extrinsic tasks rely primarily on local similarity. Our findings suggest that future embedding models and post-processing techniques should focus primarily on similarity to nearby points in vector space.Comment: Appearing in the Third Workshop on Evaluating Vector Space Representations for NLP (RepEval 2019). 7 pages + reference

    Jointly Embedding Entities and Text with Distant Supervision

    Get PDF
    Learning representations for knowledge base entities and concepts is becoming increasingly important for NLP applications. However, recent entity embedding methods have relied on structured resources that are expensive to create for new domains and corpora. We present a distantly-supervised method for jointly learning embeddings of entities and text from an unnanotated corpus, using only a list of mappings between entities and surface forms. We learn embeddings from open-domain and biomedical corpora, and compare against prior methods that rely on human-annotated text or large knowledge graph structure. Our embeddings capture entity similarity and relatedness better than prior work, both in existing biomedical datasets and a new Wikipedia-based dataset that we release to the community. Results on analogy completion and entity sense disambiguation indicate that entities and words capture complementary information that can be effectively combined for downstream use.Comment: 12 pages; Accepted to 3rd Workshop on Representation Learning for NLP (Repl4NLP 2018). Code at https://github.com/OSU-slatelab/JE

    Classifying the reported ability in clinical mobility descriptions

    Get PDF
    Assessing how individuals perform different activities is key information for modeling health states of individuals and populations. Descriptions of activity performance in clinical free text are complex, including syntactic negation and similarities to textual entailment tasks. We explore a variety of methods for the novel task of classifying four types of assertions about activity performance: Able, Unable, Unclear, and None (no information). We find that ensembling an SVM trained with lexical features and a CNN achieves 77.9% macro F1 score on our task, and yields nearly 80% recall on the rare Unclear and Unable samples. Finally, we highlight several challenges in classifying performance assertions, including capturing information about sources of assistance, incorporating syntactic structure and negation scope, and handling new modalities at test time. Our findings establish a strong baseline for this novel task, and identify intriguing areas for further research.Comment: Appearing in BioNLP 2019. 10 pages; 6 tables, 2 figure

    Improving Broad-Coverage Medical Entity Linking with Semantic Type Prediction and Large-Scale Datasets

    Get PDF
    Medical entity linking is the task of identifying and standardizing medical concepts referred to in an unstructured text. Most of the existing methods adopt a three-step approach of (1) detecting mentions, (2) generating a list of candidate concepts, and finally (3) picking the best concept among them. In this paper, we probe into alleviating the problem of overgeneration of candidate concepts in the candidate generation module, the most under-studied component of medical entity linking. For this, we present MedType, a fully modular system that prunes out irrelevant candidate concepts based on the predicted semantic type of an entity mention. We incorporate MedType into five off-the-shelf toolkits for medical entity linking and demonstrate that it consistently improves entity linking performance across several benchmark datasets. To address the dearth of annotated training data for medical entity linking, we present WikiMed and PubMedDS, two large-scale medical entity linking datasets, and demonstrate that pre-training MedType on these datasets further improves entity linking performance. We make our source code and datasets publicly available for medical entity linking research.Comment: 35 page

    Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network

    Get PDF
    Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model's performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion.Comment: The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021

    Diving for Pearls: Indexing Mobility Information in Social Security Administration Clinical Records with a Neural Relevance Tagger

    No full text
    Engineering: 2nd Place (The Ohio State University Edward F. Hayes Graduate Research Forum)A three-year embargo was granted for this item
    corecore